pundit lab

Инструкция по эксплуатации

Pundit Lab / Pundit Lab⁺ Ультразвуковой прибор

Содержание

1.	Безопасность и ответственность	3
2.	Начало работы	4
3.	Системные настройки	6
4.	Просмотр формы волны	8
5.	Измерения прибором Pundit Lab	9
5.1	Подготовка	9
5.2	Базовые измерения	10
5.3	Базовое измерение – Скорость распространения ультразвука	11
5.4	Базовое измерение – Отображение формы волны	12
5.5	Базовое измерение – Длина пути	13
5.6	Базовое измерение – Прочность на сжатие (только Pundit Lab+)	14
5.7	Сложное измерение – Поверхностная скорость	15
5.8	Сложное измерение – Глубина поверхностной трещины	16
5.9	Минимальные размеры	17
5.10	Указания по выбору преобразователя	17
5.11	Преобразователи поперечных волн 250 кГц	18
5.12	Вспомогательное устройство - держатель преобразователя	19
6.	Технические спецификации	19
7.	Номера деталей и дополнительные принадлежности	20
7.1	Комплекты	20
7.2	Преобразователи	20
7.3	Детали и дополнительные принадлежности	20
8	Техническое обслуживание и поддержка	21
9.	Pundit Link	22
9.1	Запуск Pundit Link	22
9.2	Просмотр данных	23
9.3	Регулировка настроек	24
9.4	Экспорт данных	25
9.5	Удаление и восстановление данных	26
9.6	Другие функции	26
9.7	Просмотр в реальном времени	27
9.8	Кривые перевода	30
10.	Интерфейс дистанционного управления Pundit Lab	31

Стандарты и директивы

Pundit Lab соответствует следующим стандартам: EN 12504-4 (Европа), ASTM С597-02 (Северная Америка), BS 1881 часть 203 (Великобритания), ISO1920-7:2004 (международный), IS13311 (Индия), CECS21 (Китайская Республика)

1. Безопасность и ответственность

1.1 Безопасность и меры предосторожности при использовании

В данном руководстве содержится важная информация по безопасности, использованию и техническому обслуживанию прибора Pundit Lab. Внимательно прочитайте данное руководство, прежде чем использовать прибор. Храните данное руководство в безопасном месте.

1.2 Ответственность и гарантия

"Общие условия продажи и доставки" компании Proceq применимы во всех случаях. Гарантийные рекламации и претензии, возникающие вследствие несчастного случая и причинения ущерба собственности не могут быть удовлетворены, если они обусловлены одной или несколькими следующими причинами:

- Использование прибора не по назначению, как описано в руководстве.
- Использование прибора в неработоспособном состоянии.
- Несоблюдение указаний разделов руководства, касающихся проверки работоспособности, работы и технического обслуживания прибора и его компонентов.
- Несанкционированные структурные модификации прибора и его компонентов.
- Серьезное повреждение, вызванное воздействием инородных тел, несчастными случаями, вандализмом и форс-мажорными обстоятельствами.

Все сведения в данной документации изложены добросовестно и соответствуют истине. Proceq SA не принимает на себя гарантий и исключает всю ответственность относительно полноты и/или точности сведений.

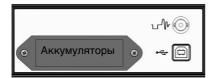
1.3 Инструкции по технике безопасности

Не допускается эксплуатация прибора детьми или лицами, находящимися под воздействием приема алкоголя, наркотиков или фармацевтических препаратов. Лица, не знакомые с данным руководством, должны использовать этот прибор под контролем.

1.4 Маркировка

Следующие обозначения используются в связи со всеми важными указаниями по технике безопасности, содержащимися в данной инструкции.

Внимание:


Это обозначение указывает на важную информацию.

1.5 Надлежащее использование

- Прибор должен использоваться только в надлежащих целях, как описано в этом документе.
- Заменяйте неисправные компоненты только на оригинальные детали, изготовленные Procea.
- Допускается установка на прибор только оригинальных дополнительных принадлежностей Proceq. Иные дополнительные принадлежности требуют согласования со специалистами компании Proceq. В противном случае Proceq снимает с себя ответственность за использование прибора с ненадлежащими дополнительными принадлежностями и отказывает в гарантии.

2. Начало работы

Задняя панель

Разъемы для: осциллографа

USB - ПК / источника питания

Питание прибора Pundit Lab может поступать от аккумуляторов, сетевой розетки или через USB подключение к ПК.

Передняя панель

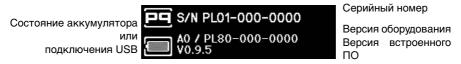
Многофункциональные клавиши являются контекстно-зависимыми. Символ на дисплее показывает активную функцию.

Клавиша в правом нижнем углу служит для включения / выключения питания и для отмены настройки и возврата в предыдущее меню.

Навигационная клавиша предназначена для перемещения по меню и установки изменяющихся параметров.

Подключение преобразователя

Подключите преобразователи к передней панели дисплея с помощью кабелей BNC. При использовании кабелей разной длины более длинный кабель следует подключать к передатчику.


Внимание: Чтобы избежать риска удара током, преобразователи следует подключать до включения прибора и отключать после его выключения.

Включение питания

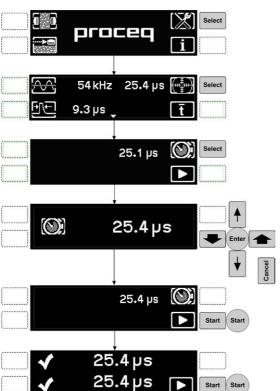
Нажмите и удерживайте клавишу в правом нижнем углу в течение 3 секунд. Отображаются главное меню и название "Pundit Lab" или "Pundit Lab+".

При нажатии многофункциональной клавиши "Информация" выводится важная информация об устройстве.

Управление питанием – Выключение питания

При работе от аккумулятора прибор переходит в режим ожидания через 5 минут бездействия. Через 30 минут он полностью отключается. При питании от подключения USB дисплей отключается через 1 час бездействия. Нажмите клавишу в правом нижнем углу (ВКЛ/ВЫКЛ питания, отмена), чтобы выйти из режима ожидания. Для выключения питания нажмите и удерживайте клавишу в правом нижнем углу в течение 3 секунд.

Установка на нуль прибора Pundit Lab



Прибор Pundit Lab необходимо регулярно устанавливать на нуль с помощью калибровочного стержня, и в частности, при изменении частоты преобразователя и замене кабелей. Ожидаемое калибровочное значение (мкс) указано на калибровочном стержне.

Подсоедините преобразователи к калибровочному стержню, нанеся гель на преобразователи и на оба конца стержня и крепко их прижмите, как показано на рисунке.

i

Внимание: При установке на нуль экспоненциального преобразователя следует использовать указанный калибровочный стержень (325 40 174).

Выберите "Системные настройки" (более подробную информацию смотрит в главе 3)

Убедитесь, что значения Тх/Rх совпадают с частотой преобразователя. Длительность импульса настраивать не нужно.

Поправочный коэффициент установлен на значение 1,0. Выберите "Калибровка".

При необходимости выберите ввод времени прохождения, как указано на калибровочном стержне.

Изменяемые параметры устанавливаются следующим образом:

Клавиши вверх/вниз - тонкая настройка

Клавиши влево/вправо - грубая настройка.

Центральная клавиша - ввод значений и возврат к предыдущему меню. Клавиша отмены - отмена ввода и возврат к предыдущему меню.

Нажмите "Пуск", чтобы начать цикл калибровки.

Последний дисплей показывает ожидаемое время прохождения и под ним измеренное время прохождения. Оно должно совпадать со значением на калибровочном стержне.

3. Системные настройки

Параметр		Предварительные настройки (нажмите многофункциональную клавишу, чтобы прокрутить)	Переменная (установите с помощью навигационной клавиши; см. 2.1)
Частота Тх /	Ях (кГц)	24, 37, 54, 82, 150, 200, 220, 250, 500	-
Длительност	ь импульса	Автоматическая	1-100 мкс
Калибровка	(см. 2.1)	- 1-110 мкс	
Усредненное	•	время сигнал	
Напр. возб. (B)	125, 250, 350, 500, ABTO	-
Коэф. усиления Rx	Pundit Lab Pundit Lab+	1x, 10x, 100x, ABTO 1x, 2x, 5x, 10x, 20x, 50x, 100x, 200x, 500x, 1000x, AUTO	-
Единицы измерения	Pundit Lab Pundit Lab+	футы / м фут / м, МПа, Н/мм2, фунт/кв. дюйм, кг/см2	-
Импульс пер	едачи	Непрерывный / пакетный	-
Дата и время (Pundit Lab+)			Установить временную метку.
Кривая прочности на сжатие (Pundit Lab+)		Кривые, определенные в PunditLink.	Войти в значения восстановления после деформации для кривых SONREB.

Настройка автоматического усиления и напряжения

Настройки напряжения возбуждения и усиления приемника можно установить в автоматический режим. В этом режиме прибор Pundit Lab находит оптимальное сочетание двух параметров для стабильного измерения.

Rx усиление 200x, 500x, 1000x

Эта функция имеется только у Pundit Lab*, она заменяет наружный усилитель (325 40 059) при использовании длинных кабелей или экспоненциальных преобразователей. При выборе таких высоких степеней усиления рекомендуется пользоваться ручным режимом с отображением формы волны.

Длительность импульса

Длительность импульса автоматически устанавливается на оптимальное значение для выбранной частоты преобразователя и обычно не требует настройки. Тем не менее, для определенных областей применения ее при желании можно изменить. (Обратитесь к ASTM D 2845 - Стандартные методы испытаний для лабораторного определения скоростей распространения ультразвука и ультразвуковых постоянных упругости камня.)

Это позволяет также использовать нестандартные преобразователи до 500 кГц с Pundit Lab:

Длина импульса "р" в микросекундах (мкс), которую нужно ввести, рассчитывается по формуле p = 1'000/(2*f), где f =частота преобразователя в к Γ ц

Если нестандартное значение устанавливается вручную, оно отмечено звездочкой.

Усредненное время/сигнал

Выполнено некоторое количество измерений, и полученные результаты времени прохождения усреднены. Усреднение времени обеспечивает наибольшее разрешение в 0.1 мсек.

Усреднение сигнала обеспечивает большую стабильность измерений в длинноволновом диапазоне (к примеру - несколько метров). В этом случае выполняется некоторое количество измерений, и колебательные сигналы усредняются для определения время прохождения. Разрешение в данном режиме - 0,5 мсек.

Непрерывная / пакетная передача

Непрерывная передача продолжается до нажатия клавиши "Стоп".

При пакетной передаче высылаются пакеты импульсов до достижения стабильного считывания, после чего передача автоматически останавливается.

Поправочный коэффициент

На измерение скорости распространения ультразвука влияет несколько факторов. Они хорошо описаны в BS 1881 : часть 203, и пользователю рекомендуется ознакомиться с этим документом. Двумя ключевыми факторами являются содержание влаги в бетоне и температура. В таблице ниже указан поправочный коэффициент, который необходимо ввести на основе рекомендаций указанного выше стандарта.

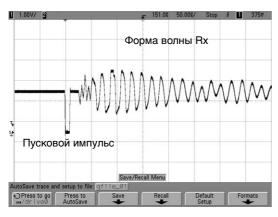
Температура	Сухой бетон	Влажный бетон
10°C – 30°C	1,0 (нет поправки)	1,0 (нет поправки)
60°C	1,05	1,04
40°C	1,02	1,02
0°C	0,99	0,99
-4°C	0,98	0,92

Единицы (только Pundit Lab+)

При выборе единиц открывается второй экран, на котором пользователь может выбрать единицы прочности на сжатие дополнительно к дюймовым или метрическим единицам.

Дата и время (только Pundit Lab+)

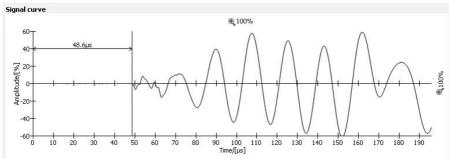
Используется для выполнения измерений с временной меткой.


Переход между настройками осуществляется клавишами "влево" и "вправо". Регулирование настроек производится клавишами "вверх" и "вниз". Для сохранения нажать ОК, для возврата без сохранения нажать "Отмена".

4. Просмотр формы волны

При проведении измерений, описанных в следующей главе, можно просматривать принятую форму волны. Прибор Pundit Lab предлагает три возможности просмотра формы волны.

Осциллограф


Подключите осциллограф к разъему на задней панели. Типичная форма волны выглядит так:

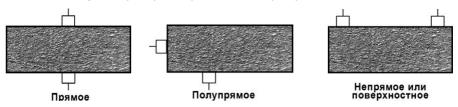
Отображаются и пусковой импульс, и получаемая форма волны.

Pundit Link - ΠΚ

Форму волны можно также просмотреть на ПК или ноутбуке, подключенном через порт USB. За подробной информацией, пожалуйста, обратитесь к инструкции по эксплуатации Pundit Link.

На приборе

Форму волны можно непосредственно посмотреть на приборе. Подробности работы см. в следующей главе.


5. Измерения прибором Pundit Lab

Прибор Pundit Lab можно использовать для нескольких целей, включая следующие:

- Измерение скорости распространения ультразвука
- Измерение длины пути
- Оценка однородности
- Измерение поверхностной скорости
- Измерение глубины трещины
- Определение динамического модуля упругости образцов (при помощи преобразователя поперечных волн)
- Только Pundit Lab*: определение прочности на сжатие при помощи только скорости распространения ультразвука или в комбинации с молотком для определения твердости по методу отскока

Расположение преобразователей

Обычно используются три варианта расположения преобразователей.

Где возможно, используйте прямое расположение, так как это обеспечивает максимальную передачу сигнала между преобразователями. Угловое расположение обладает меньшей чувствительностью, чем прямое, но большей, чем односторонее расположение. Длина пути - это расстояние между серединами преобразователей.

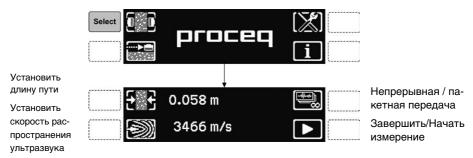
Одностороний метод особенно полезен при определении глубины трещины, качества поверхности или в случае, когда доступна только одна поверхность.

5.1 Подготовка

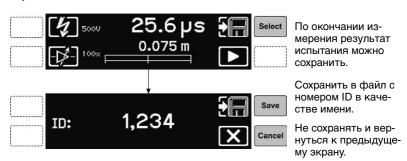
Основная подготовка одинакова для всех областей применения. Расстояние (длина пути) между преобразователями следует измерять с максимальной точностью. Очень важно обеспечить адекватную акустическую связь преобразователей с исследуемой поверхностью. Тонкий слой геля необходимо нанести на преобразователь и на поверхность. В некоторых случаях необходимо подготовить поверхность, выровняв ее.

Для сложных измерений и испытания на однородность на поверхность необходимо нанести сетку опорных точек.

Арматурные стержни влияют на ультразвуковые измерения, так как сигнал быстрее проходит через арматурные стержни, чем через бетон. Расположение арматурных стержней определяется при помощи локатора арматурных стержней, например, Profoscope, и ультразвуковые датчики следует располагать так, чтобы избежать их. BS 1881 часть 203 содержит информацию о влиянии арматурных стержней на результаты.


Стандартная процедура измерения:

- Нанесите гель.
- Расположите преобразователи.
- Осуществите измерение.
- Измените расположение преобразователей (только для сложных измерений).


• Сохраните результат.

5.2 Базовые измерения

Базовые измерения состоят из единичного измерения без необходимости изменения расположения преобразователей. Существует два базовых измерения, в зависимости от известного параметра, это либо длина пути, либо скорость распространения ультразвука.

Сохранение измерений

Список просмотра (только Pundit Lab+)

Из главного меню нажать на клавишу информации о системе (см. начало работы), чтобы попасть в подменю:

Выбрать его, чтобы отобразить информацию о системе.

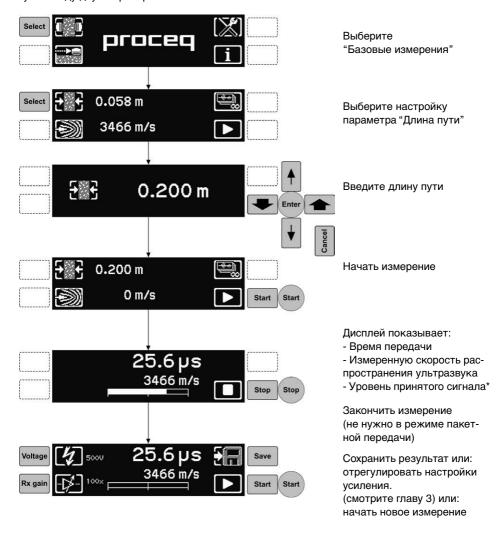
Выбрать эту кнопку для входа в список просмотра, который позволяет просмотреть результаты предшествующих измерений.

Звездочка рядом со скоростью ультразвука или расстоянием указывает, что этот параметр был рассчитан.

1-й ряд: измерение (например, 4 из 16) / временная отметка

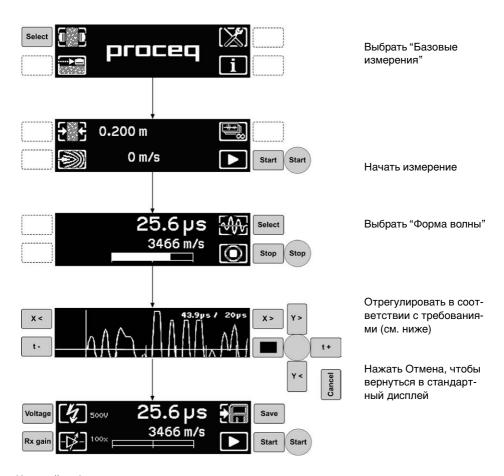
2-й ряд: ID измерения / температура

3-й ряд: частота / напряжение / коэффициент усиления / поправочный коэффициент / значе-


ние восстановления после деформации (только SONREB)

4-й ряд: время передачи / расстояние

5-й ряд: скорость импульса / прочность на сжатие / кривая перевода


5.3 Базовое измерение - Скорость распространения ультразвука

Чтобы измерить скорость распространения ультразвука, необходимо измерить длину пути между двумя преобразователями.

^{*} Наилучшие результаты достигаются, когда уровень принятого сигнала составляет около 75%. Используйте автоматические настройки усиления и напряжения (смотрите главу 3) для оптимальной эффективности.

5.4 Базовое измерение - Отображение формы волны

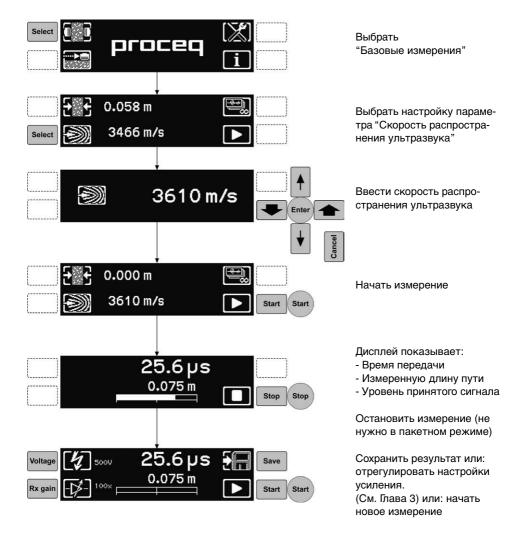
Настройка формы волны

Ү < > Изменить масштаб по вертикали

Х < > Изменить масштаб по горизонтали

t - + Ручная настройка пуска

Завершить/Начать


Примечание 1: может понадобиться уменьшить коэффициент Rx для вертикального масштабирования, чтобы получить заметный результат.

Примечание 2: после однократной настройки порог срабатывания не сбрасывается автоматически, пока не начнется новое измерение в меню "Начать измерение"

Примечание 3: форма волны не сохраняется, сохраняется только время передачи.

5.5 Базовое измерение - Длина пути

Если известна скорость распространения ультразвука в тестируемом материале, можно измерить длину пути между преобразователями Процедура идентична процедуре измерения скорости распространения сигнала, за исключением того, что в этом случае вводится известная скорость распространения ультразвука.

5.6 Базовое измерение – Прочность на сжатие (только Pundit Lab+)

Прежде чем выполнять это измерение, нужно создать в PunditLink кривую перевода и загрузить ее в прибор. В приборе можно сохранить до пяти кривых. Выбрать соответствующую кривую и установить нужную единицу прочности на сжатие. (См. Глава 3 "Системные настройки".) Выполнить измерение скорость ультразвука, как описано выше (5.3).

При выполнении измерений или после их окончания нажатием на клавиши "вверх" или "вниз" можно переключаться на индикацию скорости ультразвука или прочности на сжатие.

Метод SONREB

Этот метод измерения прочности на сжатие объединяет ультразвуковые измерения с использованием молотка для определения прочности методом упругого отскока.

Формат кривой: прочность на сжатие $f_{ck} = aV^bS^c$

Где:

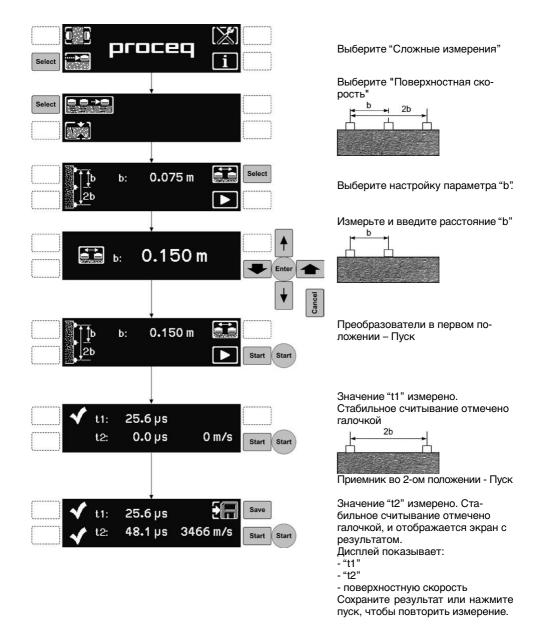
а. b и с - константы

V - скорость ультразвука в м/с

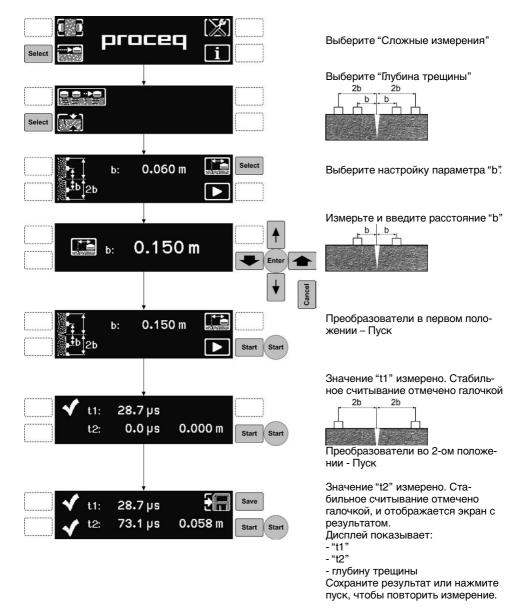
S - величина отскока

В литературе можно найти много примеров кривых SONREB

Перед выполнением измерений нужно войти в меню настроек (Глава 3) и в восстановление после деформации. В этом случае введенное значение высоты отскока сохраняется с остальными данными измерений.



Значение высоты отскока 83.1 введено здесь и сохранено вместе с данными измерений.



Примечание: значение высоты отскока может быть Q-значением (SilverSchmidt) или R-значением (Original Schmidt). Пользователь должен на свое усмотрение определить это, но в списке для просмотра значение всегда отображается как "R для Original Schmidt".

5.7 Сложное измерение - Поверхностная скорость

5.8 Сложное измерение - Глубина поверхностной трещины

Примечание: В измерении глубины трещин применяется метод, описанный в ВS 1881:часть 203. Для лучшего результата трещина должна быть перпендикулярна поверхности и свободна от воды или мусора. Трещина должна быть достаточно широкой для предотвращения распространения волны вокруг нее. Арматурные стержни, находящиеся рядом с трещиной, также будут влиять на результат. При невыполнении этих условий измеренная глубина трещины окажется намного меньше фактической.

5.9 Минимальные размеры

Минимальные размеры рекомендованы для получения точных результатов испытания.

Минимальная длина пути

100 мм для бетона с максимальной крупностью заполнителя 20 мм или меньше.

150 мм для бетона с максимальной крупностью заполнителя от 20 мм до 40 мм.

Минимальный поперечный размер образца

Это зависит от длины волны передачи и скорости распространения ультразвука. Минимальная длина пути должна быть равна или превышать длину волны передачи, иначе может быть отображено сильное уменьшение скорости распространения ультразвука. Следующая таблица из BS 1881: часть 203 содержит минимальные рекомендованные поперечные размеры объекта испытания.

Частота Тх кГц	Скорость распространения ультразвука 3500 м/с	Скорость распространения ультразвука 4000 м/с	Скорость распространения ультразвука 4500 м/с		
	Минимальный поперечный размер объекта испытания				
24	146 мм 167 мм 188 мм				
54	65 мм	74 мм	83 мм		
150	23 мм	27 мм	30 мм		

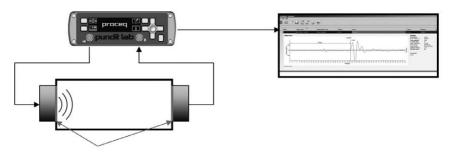
5.10 Указания по выбору преобразователя

В общем, низкие частоты обеспечивают большую глубину проникновения. Более высокие частоты позволяют получить лучшее разрешение при измерении.

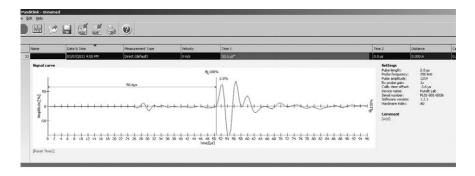
Негомогенность бетона воздействует на распространение ультразвуковых волн. Это воздействие можно значительно ослабить выбором частоты, f, такой, чтобы длина волны λ была как минимум в два раза больше размеров заполнителя. λ дана: $\lambda = c/f$.

где с - скорость распространения ультразвука (скорость звука) в бетоне. Ниже в таблице приведены типичные размеры заполнителей и соответствен максимальная рекомендованная частота:

с (м/с)	3500			4000		4500			
размер запол-	8	16	32	8	16	32	8	16	32
fmax (кГц)	219	109	55	250	125	63	281	141	70


5.11 Преобразователи поперечных волн 250 кГц

Когда выполняются измерения с преобразователями поперечных волн 250 кГц, очень важно использовать специальную контактную смазку для поперечных волн, в противном случае не удастся надлежащим образом передать поперечные волны в исследуемый объект. Контактная паста нетоксична, это водорастворимая органическая субстанция с очень высокой вязкостью.


Далее, мы настоятельно рекомендуем использовать дисплей формы волны Pundit Link для ручной отсечки начала сигнала поперечной волны. Ему всегда предшествует относительно слабое продольное эхо (см. рисунок ниже), поэтому время прохождения, определенное прибором Pundit Lab. будет соответствовать не поперечной, а продольной волне.

Перед измерением следует выполнить необходимые шаги

- 1. Нанести небольшое количество контактной смазки для измерения поперечной волны на преобразователи.
- 2. Крепко прижать преобразователи с двух сторон к калибровочному стержню 25 мкс (деталь 710 10 028). Убедиться, что контактная смазка хорошо распределена по преобразователю и что между преобразователем и калибровочным стержнем нет воздуха.
- 3. Подсоединить преобразователи к Pundit Lab.
- 4. Выбрать преобразователь 250 кГц из списка поддерживаемых преобразователей (подробнее см. руководство Pundit Lab, глава 3).
- 5. Установить прибор на нуль, как описано в руководстве Pundit Lab глава 2.1.

Выполнить измерения с преобразователями поперечной волны 250 кГц.

Получен типичный сигнал эхо с экспериментальными настройками.

Это первое эхо достигает примерно 25,4 мкс и соответствует слабой продольной волне. После 50,6 мкс появляется сигнал более сильного эхо поперечной волны.

5.12 Вспомогательное устройство - держатель преобразователя

Это устройство особенно полезно для комплексных измерений. (см. главу 5)

Индивидуальные держатели преобразователей можно отсоединить и использовать по отдельности, чтобы снизить физические нагрузки при выполнении обширных измерений.

6. Технические спецификации

Измерение времени	
прохождения	
Диапазон	0,1 – 9999 мкс, автоматический выбор диапазона.
Разрешение	0,1 мкс
Дисплей	79 x 21 мм пассивная матрица ОСИД
Передатчик	Оптимизированный ультразвуковой импульс 125 В, 250 В, 350 В, 500 В, АВТО
Приемник	
Уровни усиления на выбор, Pundit Lab	1x, 10x, 100x, ABTO
Уровни усиления на выбор, Pundit Lab+	1x, 2x, 5x, 10x, 20x, 50x, 100x, 200x, 500x, 1000x, AUTO
Диапазон частот	20 кГц – 500 кГц
Память	Энергонезависимая, > 500 измеренных значений
Региональные настройки	Поддерживаются метрические и дюймовые единицы измерения
Электропитание	
Аккумулятор	4 аккумулятора АА (> 20 часов непрерывного использования)
Сетевая розетка:	5 B, <500 мА через зарядное устройство USB
ПК	5 B, <500 мА непосредственно через кабель USB
Механические	
Размеры	172 x 55 x 220 mm
Bec	1,3 кг (вкл. аккумуляторы)
Условия окружающей	
среды	
Рабочая температура	от -10° до 60°C (от 0° до 140°F)
Влажность	<95% RH, без конденсата
Классификация по IP	IP42

7. Номера деталей и дополнительные принадлежности

7.1 Комплекты

№ для заказа	Описание
326 10 001	Комплект прибора Pundit Lab, состоящий из: электронного блока, 2 преобразователей (54 кГц), 2 кабелей BNC длиной 1,5 м, геля, калибровочного стержня, переходника с кабелем USB, 4 аккумуляторов AA(LR6), носителя данных с ПО, документации и переносного футляра
326 20 001	Комплект прибора Pundit Lab +, состоящий из: электронного блока, 2 преобразователей (54 кГц), 2 кабелей BNC длиной 1,5 м, геля, калибровочного стержня, переходника с кабелем USB, 4 аккумулятор ов а AA(LR6), носителя данных с ПО, документации и переносного футляра

7.2. Преобразователи

325 40 026	Преобразователь 24 кГц (для работы необходимы два преобразователя)		
325 40 131	Преобразователь 54 кГц (для работы необходимы два преобразователя)		
325 40 141	Преобразователь 150 кГц (для работы необходимы два преобразователя)		
325 40 176	2 экспоненциальных преобразователя 54 кГц, включая калибровочный		
	стержень		
325 40 177	Преобразователь 250 кГц (для работы необходимы два преобразователя)		
325 40 175	Преобразователь 500 кГц (для работы необходимы два преобразователя)		
325 40 049	2 преобразователя поперечной волны 250 кГц, включая контактную		
	смазку		

7.3. Детали и дополнительные принадлежности

326 80 211	Переносной футляр Pundit lab		
325 40 059	59 Усилитель для длинных кабелей (>10 м) и экспоненциальный преобразо-		
	ватель (не требуется для Pundit Lab+)		
325 40 021	Кабель с разъемом BNC, L=1,5 м (5 футов)		
710 10 004	Кабель с разъемом 2x BNC, L=3,6 м (12 футов)		
325 40 022	Кабель с разъемом BNC, L=10 м (33 футов)		
325 40 024	Кабель с разъемом BNC, L=30 м (100 футов)		
710 10 031	Ультразвуковой гель, бутылка 250 мл		
325 40 048	Контактная смазка для поперечной волны		
710 10 028	Калибровочный стержень 25 мкс для Pundit		
710 10 029	Калибровочный стержень 100 мкс для Pundit		
351 90 018	Кабель USB, 1,8 м		
341 80 112	Зарядное устройство USB, стандартное		
326 01 033	Пробный блок Pundit Lab		
325 40 150	Комплект держателей преобразователей		

8. Техническое обслуживание и поддержка

Сообщение об ошибке

Если сообщение появилось во время измерения, значит, не был получен стабильный сигнал

Если это происходит:

Выполнить измерения в постоянном режиме.

Изменить импульс напряжения или усиление.

Использовать дисплей формы волны для определения оптимальных настроек напряжения и чувствительности.

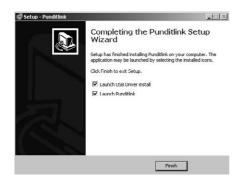
1.0	Сигнал слишком слабый
2.0	Неверное измерение (не выполняется условие t1 >t2/2 в течение измерения
	трещины)
11.0	Память заполнена
37.0	Только Pundit Lab+: неверное системное время (вероятно, разрядилась ба-
	тарея для сохранения энергозависимой памяти и часов реального времени)

Концепция технической поддержки

Proceq обеспечивает полную техническую поддержку и обслуживание с помощь своей мировой дилерской сети. Рекомендуется зарегистрировать прибор на сайте www.proceq. сот для получения новейших доступных обновлений и другой ценной информации.

Стандартная гарантия и расширенная гарантия

Стандартная гарантия на электронные компоненты прибора составляет 24 месяца, на механические компоненты прибора - 6 месяцев.


Расширить гарантию на электронные компоненты прибора еще на один, два или три года можно в течение 90 дней со дня приобретения.

9 Pundit Link

9.1 Запуск Pundit Link

Найдите файл "Punditlink Setup.exe" на вашем компьютере или CD и щелкните по нему мышью. Следуйте инструкциям на дисплее.



Убедитесь, что галочкой отмечено поле "Launch USB Driver install".

USB-драйвер установит виртуальный сомпорт, необходимый для коммуникации с Pundit.

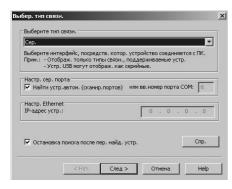
Дважды щелкните по иконке Pundit Link на рабочем столе или запустите Pundit Link из меню "Пуск". Pundit link запускается с пустым списком.

Настройки приложения

Пункт меню "Файл - Настройки приложения" позволяет пользователю выбирать используемый язык и формат даты и времени.

Подключение к Pundit

Подключитесь к USB-порту Pundit. после чего выберите одну из следующих опций:



Загрузить все данные с Pundit.

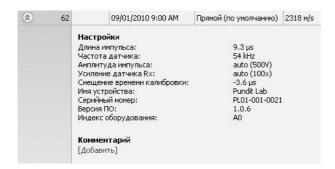
Запуск режима "Просмотр в реальном времени" для дистанционного контроля измерений и анализа формы волны.

При выборе одной из этих опций появится следующее диалоговое окно:

Оставьте настройки по умолчанию. Если вам известен номер COM-порта, вы можете ввести его вручную.

Шелкните "След »"

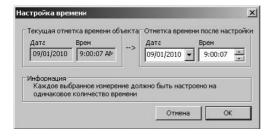
После обнаружения Pundit его данные будут отображены на дисплее. Щелкните кнопку "Готово" для установления связи.


9.2 Просмотр данных

Данные, сохраненные в Pundit, будут отображены в виде таблицы:

- Столбец "Id" отображает номер объекта измерений.
- Столбец "Название" позволяет задать имя объекту измерения.
- "Дата и время". Для Pundit Lab это время, когда данные загружены на ПК, или в режиме "Просмотра в реальном времени"- дата и время выполнения измерения. Для Pundit Lab* это дата и время выполнения измерения.
- В столбце "Тип измерения" отображается используемый тип измерения ("прямой" или один из типов "сложных измерений").
- Колонка "Скорость" отражает измеренную скорость ультразвука или настройки для измерения длины пути.
- Столбцы "Время 1" и "Время 2" отображают измеренное время передачи или время составных измерений.
- Колонка "Расстояние" отражает измеренное расстояние или настройки для измерения скорости ультразвука.
- "Глубина трещины" показывает измеренную глубину трещины.
- "Поправочный коэффициент" отображает величину коэффициента поправки.
- Только для Pundit Lab*: "Прочность на сжатие" показывает рассчитанное значение, которое основывается на выбранной "кривой перевода".
- Только для Pundit Lab*: "Восстановление после деформации" это введенное значение (только метод SONREB)

Щелкните по иконке с двойной стрелкой в столбце "ld", чтобы просмотреть подробные данные:

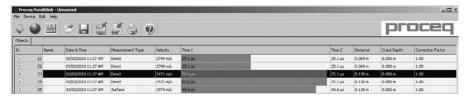

Внимание: Для добавления комментария к объекту щелкните "Добавить".

9.3 Регулировка настроек

Каждая настройка, используемая в Pundit во время серии измерений, может регулироваться впоследствии в Pundit Link. Для измерения прочности на сжатие, выполняемого с Pundit Lab*, впоследствии можно настроить кривую перевода и значение восстановления после деформации. Это можно сделать либо щелчком правой кнопкой непосредственно на единице в соответствующей колонке, либо щелчком на синей настройке в подробном виде измеряемого объекта. Появится выпадающее меню, в котором выполняются необходимые настройки.

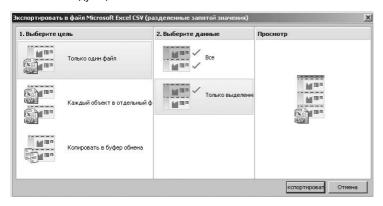
Настройка даты и времени

Правой кнопкой мыши щелкните в столбце "Дата и время".

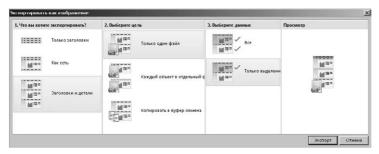

Время будет изменено только для выбранной серии.

Обращаем ваше внимание, что Pundit Lab не имеет встроенных часов, поэтому для загруженных данных используются те дата и время, которые были на момент загрузки данных.

В столбце "Запись данных" показаны дата и время проведения измерения.


9.4 Экспорт данных

Pundit Link предоставляет возможность экспортировать выбранные объекты или весь проект для использования в других программах. Щелкните мышью по объекту, который требуется экспортировать. Он будет отмечен, как показано ниже на иллюстрации.



Щелкните по иконке "Экспорт в CSV файл(ы)". Данные из выбранного объекта измерения будут экспортированы в отдельный(-ые) файл(ы) формата Microsoft Office Excel, разделенные запятой значения. Опции экспорта выбираются в следующем окне:

Щелкните по иконке "Экспорт в изображение", чтобы открыть окно с выбором варианта экспорта данных.

В обоих случаях результат выбранных опций вы сможете наглядно увидеть в отдельном окне "Просмотр".

Щелкните кнопку "Экспорт" для того, чтобы выбрать путь сохранения файла, имя и, если задан экспорт в изображение, графический формат: .png, .bmp или .jpg

9.5 Удаление и восстановление данных

Пункт меню "Редактировать - Удалить" позволяет удалять одну или несколько серий данных из загруженных результатов измерений.

Внимание: данная процедура не удаляет данные из Pundit, а только данные из текущего проекта на ПК.

Пункт меню "Редактировать - Выбрать все" позволяет пользователю выбрать все серии данных в проекте для удаления, экспорта и т. д.

Восстановление оригинальных загруженных данных

Выберите пункт меню "Файл - Восстановить оригинальные данные", чтобы восстановить данные в том формате, в котором они были загружены. Эта функция полезна, если пользователь выполняет операции с данными и требуется вернуться к их первоначальному варианту. Перед восстановлением оригинальных данных появится соответствующее предупреждающее сообщение. Подтвердите восстановление.

Внимание: все имена и комментарии, добавленные сериям данных, будут удалены.

Удаление данных, сохраненных в Pundit

Выберите пункт меню "Устройство – Удалить все объекты измерений в Pundit", чтобы удалить все данные, сохраненные в Pundit. Перед удалением данных появится соответствующее предупреждающее сообщение. Подтвердите удаление.

Внимание: данная операция удаляет все серии измерений. Серии по отдельности удалить невозможно.

9.6 Другие функции

В верхней части окна программы расположены следующие функции, отображаемые в виде иконок:

Иконка "PQUpgrade" - позволяет обновлять прошивку прибора через интернет или из файла с вашего ПК.

Иконка "Открыть проект" позволяет открывать ранее сохраненные проекты .pql.

Иконка "Сохранить проект" позволяет сохранить текущий проект.

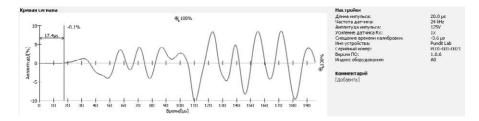
Иконка "Печать" открывает диалоговое окно принтера. Пользователь может выбрать в открывшемся окне, какие данные требуется распечатать (все или только выбранные).

9.7 Просмотр в реальном времени

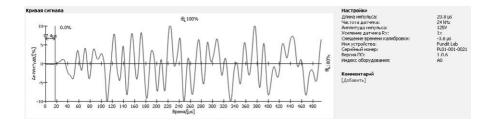
Pundit Link позволяет удаленно контролировать Pundit Lab и отображать форму волны непосредственно на дисплее ПК.

Щелкните по иконке "Просмотр в реальном времени". Если подключение к устройству не выполнено, будет запущен процесс подключения (9.1). На дисплей выводится меню режима "Просмотр в реальном времени".

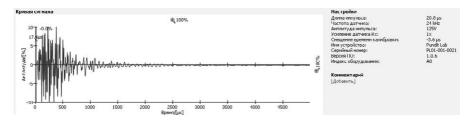
В нем пользователь может контролировать все параметры передачи. Щелкните по кноп-ке "Дополнительные настройки...", чтобы настроить следующие параметры:



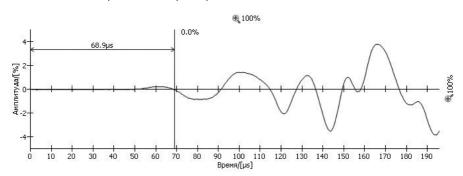
Обращаем ваше внимание, что длина импульса по умолчанию настроена на оптимальное значение для выбранной частоты ультразвукового преобразователя.


Временной интервал

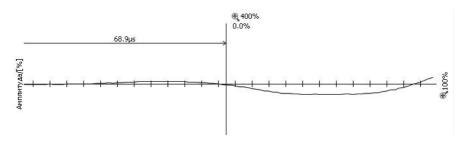
Временной интервал может быть задан от 0,1 мс до макс. 10 мс (пожалуйста, учитывайте, что 10 мс соответствуют 40 м пути, пройденным ультразвуковой волной в бетоне). Обычно измерения проводятся со значениями менее 0,5 мс. Данная настройка задает шкалу времени для отображения формы волны, как показано на изображении ниже.


Пример: время записи задано на 0,2 мс

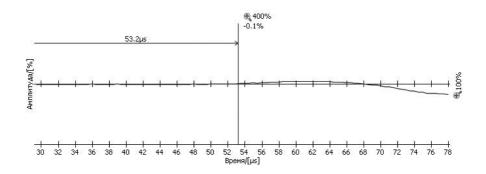
Пример: время записи задано на 0,5 мс


Пример: время записи задано на 5 мс

Настройка порога срабатывания вручную


Pundit Link предоставляет пользователю возможность задавать порог срабатывания вручную. Ниже приведен соответствующий пример.

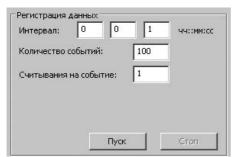
Автоматическое определение порога срабатывания.



Увеличьте изображение, нажимая на кнопки масштабирования, соответствующие шка-

лам амплитуды и времени, чтобы выполнить точную настройку.

Щелкните на синей линии и, удерживая нажатой кнопку мыши, перетащите ее в место, определенное для настройки порога срабатывания вручную.

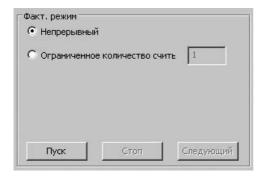


 $\begin{bmatrix} \mathbf{i} \end{bmatrix}$

Внимание: данный пример отображает сигнал с очень низкой амплитудой. Для получения лучших результатов используйте более высокие значения выходного тока и чувствительности.

Запись данных

Режим записи данных позволяет пользователю программировать тестовую последовательность.

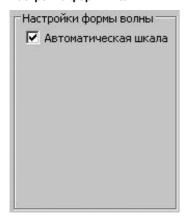

Интервал – интервал между измерениями.

Количество событий – события до завершения теста.

Считываний на событие – количество измерений на каждый интервал.

Фактический режим

Фактический режим позволяет пользователю проводить тест как с записью данных, так и без нее.



Pundit Lab начинает измерение в непрерывном режиме после нажатия "Пуск" и выполняет его до нажатия "Стоп".

Если требуется ограниченное количество считываний, то их количество можно задать в соответствующем поле.

С нажатием "Следующий" данные сохраняются, и начинается следующее измерение.

Настройка формы волны

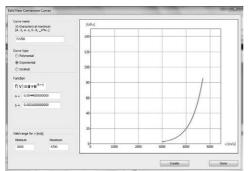
Выбор поля "Автоматическая шкала" настраивает параметры масштабирования при отображении формы волны на оптимальные значения.

9.8 Кривые перевода

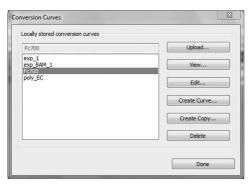
Pundit Lab⁺ позволяет делать оценку прочности на сжатие с использованием измерения скорости распространения ультразвука или комбинации скорости ультразвука и измерений твердости по методу отскока.

Для этого необходимо создать кривую перевода и загрузить ее в прибор.

Кривые перевода в большой степени зависят от вида тестируемого бетона, в литературе приводятся многочисленные примеры кривых.


Pundit Lab⁺ позволяет программировать как многокомпонентные, так и экспоненциальные кривые, а в случае комплексных измерений ультразвука/восстановления после деформации можно ввести кривую, базирующуюся на методе SONREB (SONic REBound).

Выбрать пункт меню "Кривые перевода"



Здесь можно просмотреть имеющиеся кривые, сохраненные в вашем компьютере, скопировать одну из имеющихся кривых для модификации или:

Создать новую кривую.

Ввести параметры кривой и нажать "Создать".

Новая кривая появится в раскрывающемся списке, ее можно загрузить в Pundit Lab⁺.

10. Интерфейс дистанционного управления Pundit Lab

Интерфейс Pundit Lab полностью открыт для тех пользователей, которые не хотят использовать программное обеспечение PunditLink, а вместо этого хотят интегрировать Pundit Lab в то программное обеспечение, которое они используют в лаборатории, например, LabVIEW.

Руководство к интерфейсу дистанционного управления, которое содержит полные инструкции, можно скачать в разделе "Downloads" на интернет-странице Proceq: www.proceq.com.

Proceq Europe

Ringstrasse 2 CH-8603 Schwerzenbach Switzerland Phone +41 43 355 38 00 Fax +41 43 355 38 12 info-europe@proceq.com

Proceq UK Ltd.

Bedford i-lab, Priory Business Park Stannard Way Bedford MK44 3RZ United Kingdom Phone +44 123 483 45 15 info-uk@proceq.com

Proceq USA, Inc. 117 Corporation Drive

Aliquippa, PA 15001 U.S.A. Phone +1 724 512 03 30 Fax +1 724 512 03 31 info-usa@proceq.com

Proceq Asia Pte Ltd

12 New Industrial Road #02-02A Morningstar Centre Singapore 536202 Phone +65 638 239 66 Fax +65 638 233 07 info-asia@proceq.com

Proceq Rus LLC

UI. Optikov 4 korp. 2, lit. A, Office 410 197374 St. Petersburg Russia Phone/Fax +7 812 448 35 00 info-russia@proceq.com

Proceq Middle East

P. O. Box 8365, SAIF Zone, Sharjah, United Arab Emirates Phone +971 6 557 8505 Fax +971 6 557 8606 info-middleeast@proceg.com

Proceq SAO Ltd.

Rua Paes Leme, 136, cj 610 Pinheiros, São Paulo Brasil Cep. 05424-010 Phone +55 11 3083 38 89 info-southamerica@proceq.com

Proceq China

Unit B, 19th Floor
Five Continent International Mansion, No. 807
Zhao Jia Bang Road
Shanghai 200032
China
Phone +86 21 631 774 79
Fax +86 21 631 750 15

info-china@proceq.com www.proceq.com

Изменения могут быть внесены без предварительного уведомления

Copyright © 2017 Proceq SA, Шверценбах Номер детали: 820 326 01 R

